3 research outputs found

    A Review on the Lifecycle Strategies Enhancing Remanufacturing

    Get PDF
    Remanufacturing is a domain that has increasingly been exploited during recent years due to its numerous advantages and the increasing need for society to promote a circular economy leading to sustainability. Remanufacturing is one of the main end-of-life (EoL) options that can lead to a circular economy. There is therefore a strong need to prioritize this option over other available options at the end-of-life stage of a product because it is the only recovery option that maintains the same quality as that of a new product. This review focuses on the different lifecycle strategies that can help improve remanufacturing; in other words, the various strategies prior to, during or after the end-of-life of a product that can increase the chances of that product being remanufactured rather than being recycled or disposed of after its end-of-use. The emergence of the fourth industrial revolution, also known as industry 4.0 (I4.0), will help enhance data acquisition and sharing between different stages in the supply chain, as well boost smart remanufacturing techniques. This review examines how strategies like design for remanufacturing (DfRem), remaining useful life (RUL), product service system (PSS), closed-loop supply chain (CLSC), smart remanufacturing, EoL product collection and reverse logistics (RL) can enhance remanufacturing. We should bear in mind that not all products can be remanufactured, so other options are also considered. This review mainly focuses on products that can be remanufactured. For this review, we used 181 research papers from three databases; Science Direct, Web of Science and Scopus

    A Decision-Making Model for Remanufacturing Facility Location in Underdeveloped Countries: A Capacitated Facility Location Problem Approach

    No full text
    Underdeveloped countries are gradually opening remanufacturing facilities to recover end-of-life products (EOL). Locating these facilities in underdeveloped countries is quite challenging because many factors related to the environment, economics, and ethics have to be considered. This paper proposes a decision-making model for locating remanufacturing facilities, a critical factor in implementing remanufacturing in underdeveloped countries. Our principal objective is to obtain the capacity, number, and geographical locations for newly established remanufacturing facilities using a Capacitated Facility Location Problem (CFLP) approach. The mathematical model helps us find the number of facilities that will need to be opened to fully recover the EOL products and the total cost during the entire process. A case study on the establishment of SEVALO Remanufacturing Machinery Co., Ltd. in Cameroon is used to demonstrate the CFLP approach. The results and analyses show that the successful establishment of SEVALO in Cameroon will significantly help to reduce the quantity of construction machinery parts dumped into the environment

    A Decision-Making Model for Remanufacturing Facility Location in Underdeveloped Countries: A Capacitated Facility Location Problem Approach

    No full text
    Underdeveloped countries are gradually opening remanufacturing facilities to recover end-of-life products (EOL). Locating these facilities in underdeveloped countries is quite challenging because many factors related to the environment, economics, and ethics have to be considered. This paper proposes a decision-making model for locating remanufacturing facilities, a critical factor in implementing remanufacturing in underdeveloped countries. Our principal objective is to obtain the capacity, number, and geographical locations for newly established remanufacturing facilities using a Capacitated Facility Location Problem (CFLP) approach. The mathematical model helps us find the number of facilities that will need to be opened to fully recover the EOL products and the total cost during the entire process. A case study on the establishment of SEVALO Remanufacturing Machinery Co., Ltd. in Cameroon is used to demonstrate the CFLP approach. The results and analyses show that the successful establishment of SEVALO in Cameroon will significantly help to reduce the quantity of construction machinery parts dumped into the environment
    corecore